Search results for "Synchronous reluctance motor"

showing 10 items of 12 documents

A Saturation Model of the Synchronous Reluctance Motor and its Identification by Genetic Algorithms

2018

This paper proposes a complete saturation model of the Synchronous Reluctance Motor (Syn1231), accounting for both the self-saturation and cross-saturation effects. This model is based on an analytical relationship between the stator flux and current components, and is characterized by parameters presenting an interesting physical interpretation, differently from many other saturation model in the scientific literature. It proposes also an identification technique of such a model based on stand-still tests, without the need of locking the rotor. The proposed saturation model permits the complete description of the magnetic behaviour of the machine with 8 parameters, fewer than those require…

IdentificationComputer simulationComputer scienceStator05 social sciences020207 software engineering02 engineering and technologylaw.inventionSettore ING-INF/04 - AutomaticaControl theorylawMagnetic characteristicParameters' estimationGenetic algorithm0202 electrical engineering electronic engineering information engineeringSuperimposition0501 psychology and cognitive sciencesMagnetic characteristicsSynchronous Reluctance Motor (SynRM)Synchronous reluctance motorSaturation (magnetic)050107 human factors2018 IEEE Energy Conversion Congress and Exposition (ECCE)
researchProduct

Space-vector State Dynamic Model of the Synchronous Reluctance Motor Considering Self, Cross-Saturation and Iron Losses

2021

This paper proposes a space-vector dynamic model of the Synchronous Reluctance Motor (SynRM) including both self-saturation, cross-saturation effects, and iron losses expressed in state form, where the magnetizing current has been selected as a state variable. The proposed dynamic model is based on an original function between the stator flux and the magnetizing current components, improving a previously developed magnetic model. Additionally, the proposed model includes, besides the magnetic saturation, also iron losses. The proposed model requires 11 coefficients, among which 6 describe the self-saturation on both axes and 5 describe the cross-saturation. Starting from the definition of a…

State variablemagnetic modelComputer simulationEstimation theoryStatorFunction (mathematics)parameters' estimationMagnetic fluxlaw.inventionError functionSettore ING-INF/04 - AutomaticaControl theorylawIron lossesReciprocity (electromagnetism)space-vector dynamic modelSynchronous Reluctance Motor (SynRM)Mathematics
researchProduct

A Nonlinear Control of Synchronous Reluctance Motors (SynRM) Based on Feedback Linearization Considering the Self and Cross-Saturation Effects

2019

This paper proposes a nonlinear controller based on feedback linearization for Synchronous Reluctance Motors (SynRM) drives that takes into consideration the self and cross-saturation effects. Such control technique permits the dynamics of both the speed and flux loops to be maintained constant independently from the load and the saturation of the iron core. The proposed technique has been tested experimentally on a suitably developed test set-up.

feedback linearizationComputer scienceMagnetic reluctance05 social sciencesSynchronous reluctance motors (SynRM)020207 software engineering02 engineering and technologyNonlinear controlNonlinear systemSettore ING-INF/04 - AutomaticaMagnetic coreControl theorymagnetic saturation0202 electrical engineering electronic engineering information engineeringTorque0501 psychology and cognitive sciencesSynchronous reluctance motors (SynRM) Feedback linearization Magnetic saturationFeedback linearizationSaturation (magnetic)050107 human factors2019 IEEE Energy Conversion Congress and Exposition (ECCE)
researchProduct

Space‐vector state dynamic model of SynRM considering self‐ and cross‐saturation and related parameter identification

2020

This study proposes a state formulation of the space-vector dynamic model of the Synchronous Reluctance Motor (SynRM) considering both saturation and cross-saturation effects. The proposed model adopts the stator currents as state variables and has been theoretically developed in both the rotor and stator reference frames. The proposed magnetic model is based on a flux versus current approach and relies on the knowledge of 11 parameters. Starting from the definition of a suitable co-energy variation function, new flux versus current functions have been initially developed, based on the hyperbolic functions and, consequently, the static and dynamic inductance versus current functions have be…

010302 applied physicsState variableComputer simulationComputer scienceStatorEstimation theoryRotor (electric)020208 electrical & electronic engineeringHyperbolic function02 engineering and technology01 natural scienceslaw.inventionInductanceError functionSettore ING-INF/04 - AutomaticaControl theorylaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringSynchronous Reluctance Motor (SynRM) Space-vector dynamic model Parameter estimation Magnetic characteristicsElectrical and Electronic EngineeringIET Electric Power Applications
researchProduct

Feedback Linearization Based Nonlinear Control of SynRM Drives Accounting for Self- and Cross-Saturation

2022

This article proposes a nonlinear controller based on feedback linearization (FL) for synchronous reluctance motor (SynRM) drives which takes into consideration the magnetic saturation. The proposed nonlinear FL control based control technique has been developed starting from the theoretical definition of an original dynamic model of the SynRM taking into consideration both the self- and the cross-saturation effects. Such a control technique permits the dynamics of both the speed and axis flux loops to be maintained constant independently from the load and the saturation of the iron core in both constant flux and variable direct axis flux operating conditions. Finally, sensitivity of the pe…

synchronous reluctance motors (SynRM)Settore ING-INF/04 - AutomaticaControl and Systems Engineeringmagnetic saturationElectrical and Electronic EngineeringFeedback linearization (FL)Industrial and Manufacturing Engineering
researchProduct

A Model Modulated Predictive Current Control Algorithm for the Synchronous Reluctance Motor

2022

This paper proposes a Model Modulated Predictive Control (M2PC) specifically developed for Synchronous Reluctance Motors (SynRM) drives and based on a purposely developed magnetic model taking into account both self- and cross-saturation. The proposed M2PC exploits the discrete-time version of the dynamic model to compute the current prediction and the resulting predicted current error. The built-in PWM modulator chooses the optimal pair of voltage space-vector to be applied by the inverter to minimize the current error. The magnetic model permits obtaining good dynamic performance in every working condition.

Settore ING-INF/04 - AutomaticaSynchronous Reluctance Motor (SynRM) Model Predictive Control (MPC) Predictive Current Control (PCC)
researchProduct

Space-vector State Dynamic Model of the SynRM Considering Self, Cross-Saturation and Iron Losses and Related Identification Technique

2023

This article proposes a space-vector dynamic model of the Synchronous Reluctance Motor (SynRM) including both self-saturation, cross-saturation effects, and iron losses. The model is expressed in state form, where the magnetizing current has been selected as a state variable. The proposed dynamic model is based on an original function describing the relationship between the stator flux and the magnetizing current components, improving a previously developed magnetic model. Additionally, the proposed model includes, besides the magnetic saturation, also iron losses. The proposed model requires 11 coefficients, among which 6 describe the self-saturation on both axes and 5 describe the cross-s…

Settore ING-INF/04 - AutomaticaControl and Systems EngineeringSynchronous Reluctance Motor (SynRM) space-vector dynamic model magnetic model iron losses parameters' estimationElectrical and Electronic EngineeringIndustrial and Manufacturing Engineering
researchProduct

Input-Output Feedback Linearization Control with On-Line Inductances Estimation of Synchronous Reluctance Motors

2021

This paper proposes an adaptive input-output Feedback Linearization (FL) techniques for Synchronous Reluctance Motor (SynRM) drives, taking into consideration the iron losses. As a main original content, this work proposes a control law based on a new dynamic model of the SynRM including iron losses as well as the on-line estimation of the static inductances. The on-line estimation of the SynRM static inductances permits to inherently take into consideration the magnetic saturation phenomena occuring on both axes. The estimation law is obtained thanks to a Lyapunov-based analysis and thus the stability of the entire control system, including the estimation algorithm, is intrinsically guaran…

Lyapunov functionfeedback linearizationSynchronous reluctance motorMagnetic reluctanceComputer scienceStability (learning theory)Nonlinear systemsymbols.namesakeinductances estimationSettore ING-INF/04 - AutomaticaControl theoryControl systemLine (geometry)symbolsA priori and a posterioriFeedback linearizationAdaptive system
researchProduct

Vector Projection-based Sensorless Control of a SynRM Drive Including Self and Cross-Saturation

2022

This paper presents a sensorless technique for SynRM drives that is based on a vector projection method and takes into consideration the magnetic saturation of the motor, both the self and the cross-saturation. The proposed method is based on the dynamic equation of the SynRM including saturation, rewritten in integral form, and does not involve any high-frequency carrier injection. The technique has been tested in numerical simulation and experimentally on a suitably developed test set-up. Experimental results show a correct behavior of the sensorless SynRM drive, properly accomplishing speed transients in a wide speed range, including low speed, still maintaining a good accuracy in the sp…

Settore ING-INF/04 - AutomaticaSynchronous reluctance motor sensorless control self and cross-saturation
researchProduct

Active Disturbance Rejection Control of Synchronous Reluctance Motors

2020

This paper describes how the ADRC (Active Disturbance Rejection Control) strategy can be successfully applied to SynRM (Synchronous Reluctance Motor) drives. The ADRC is an adaptive robust extension of the input-output Feedback Linearization Control (FLC). Its main feature is that the nonlinear transformation of the state is computed on-line and not by using the model. As a consequence, any unmodelled dynamics or uncertainty of the parameters can be addressed. The control strategy has been verified successfully with experimental tests confirming the high dynamic response of the drive.

Computer scienceMagnetic reluctance05 social sciences020207 software engineering02 engineering and technologyActive disturbance rejection controlSettore ING-INF/04 - AutomaticaControl theoryActive disturbance rejection control synchronous reluctance motors feedback linearization.0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesFeedback linearizationSynchronous reluctance motorNonlinear transformation050107 human factors
researchProduct